首页> 外文OA文献 >Minimax estimation in sparse canonical correlation analysis
【2h】

Minimax estimation in sparse canonical correlation analysis

机译:稀疏正则相关分析中的minimax估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Canonical correlation analysis is a widely used multivariate statisticaltechnique for exploring the relation between two sets of variables. This paperconsiders the problem of estimating the leading canonical correlationdirections in high-dimensional settings. Recently, under the assumption thatthe leading canonical correlation directions are sparse, various procedureshave been proposed for many high-dimensional applications involving massivedata sets. However, there has been few theoretical justification available inthe literature. In this paper, we establish rate-optimal nonasymptotic minimaxestimation with respect to an appropriate loss function for a wide range ofmodel spaces. Two interesting phenomena are observed. First, the minimax ratesare not affected by the presence of nuisance parameters, namely the covariancematrices of the two sets of random variables, though they need to be estimatedin the canonical correlation analysis problem. Second, we allow the presence ofthe residual canonical correlation directions. However, they do not influencethe minimax rates under a mild condition on eigengap. A generalized sin-thetatheorem and an empirical process bound for Gaussian quadratic forms under rankconstraint are used to establish the minimax upper bounds, which may be ofindependent interest.
机译:典型相关分析是一种广泛使用的多元统计技术,用于探索两组变量之间的关系。本文考虑了在高维环境中估计领先的典型相关方向的问题。近来,在假设主要规范相关方向稀疏的假设下,针对涉及海量数据集的许多高维应用,已经提出了各种程序。但是,文献中几乎没有理论依据。在本文中,我们针对各种模型空间的适当损失函数建立了速率最优非渐近最小极大估计。观察到两个有趣的现象。首先,最小最大速率不受干扰参数(即两组随机变量的协方差矩阵)的存在的影响,尽管在规范相关分析问题中需要估计它们。其次,我们允许存在剩余典范相关方向。但是,在温和条件下,它们不会影响eigengap的minimax速率。广义正弦定理和秩约束下高斯二次形式的经验过程边界用于建立极大极小上界,这可能是无关紧要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号